Search results for "FMCW radar"
showing 3 items of 3 documents
Classification of Targets Using Statistical Features from Range FFT of mmWave FMCW Radars
2021
Radars with mmWave frequency modulated continuous wave (FMCW) technology accurately estimate the range and velocity of targets in their field of view (FoV). The targeted angle of arrival (AoA) estimation can be improved by increasing receiving antennas or by using multiple-input multiple-output (MIMO). However, obtaining target features such as target type remains challenging. In this paper, we present a novel target classification method based on machine learning and features extracted from a range fast Fourier transform (FFT) profile by using mmWave FMCW radars operating in the frequency range of 77–81 GHz. The measurements are carried out in a variety of realistic situations, including p…
Localization of Multi-Class On-Road and Aerial Targets Using mmWave FMCW Radar
2021
mmWave radars play a vital role in autonomous systems, such as unmanned aerial vehicles (UAVs), unmanned surface vehicles (USVs), ground station control and monitoring systems. The challenging task when using mmWave radars is to estimate the accurate angle of arrival (AoA) of the targets, due to the limited number of receivers. In this paper, we present a novel AoA estimation technique, using mmWave FMCW radars operating in the frequency range 77–81 GHz by utilizing the mechanical rotation. Rotating the radar also increases the field of view in both azimuth and elevation. The proposed method estimates the AoA of the targets, using only a single transmitter and receiver. The measurements are…
Human Activity Signatures Captured under Different Directions Using SISO and MIMO Radar Systems
2022
In this paper, we highlight and resolve the shortcomings of single-input single-output (SISO) millimeter wave (mm-Wave) radar systems for human activity recognition (HAR). A 2×2 distributed multiple-input multiple-output (MIMO) radar framework is presented to capture human activity signatures under realistic conditions in indoor environments. We propose to distribute the two pairs of collocated transmitter–receiver antennas in order to illuminate the indoor environment from different perspectives. For the proposed MIMO system, we measure the time-variant (TV) radial velocity distribution and TV mean radial velocity to observe the signatures of human activities. We deploy the Anc…